1. yes; ends in 0
2. no; does not end in $0,2,4,6$, or 8
3. yes; ends in 5
4. yes; ends in 0
5. yes; ends in 0
6. no; does not end in $0,2,4,6$, or 8
7. yes; ends in 8
8. no; does not end in 0
9. no; sum of digits is not divisible by 9
10. yes; sum of digits is divisible by 3
11. yes; sum of digits is divisible by 9
12. yes; sum of digits is divisible by 3
13. no; sum of digits is not divisible by 9
14. yes; sum of digits is divisible by 9
15. yes; sum of digits is divisible by 3
16. yes; sum of digits is divisible by 3
17. 1, 2, 4
18. 1, 23
19. 1 row of $32 ; 2$ rows of $16 ; 4$ rows of 8
20. $3 ; 1+1+1=3$; 3 is divisible by 3 .
21. none
22. 2, 3, 9 ; the number ends in 8 ; $2+8+8=18$; 18 is divisible by 3 and 9 .
23. 2, 3, 5,10 ; the number ends in $0 ; 3+0+0=3$; 3 is divisible by 3.
24. 2; the number ends in 2.
25. 3,$9 ; 8+9+1=18 ; 18$ is divisible by 3 and 9 .
26. 5; the number ends in 5.
27. 2; the number ends in 4.
28. a. 66 and 4,710
b. 66 and 4,710
c. An integer is divisible by 6 if it is an even number and the sum of its digits is divisible by 3.
29. 1-25, 5-5
30. 1-32,2•16, $4 \cdot 8$
31. 1-37
32. 1-53
33. $1 \cdot 72,2 \cdot 36,3 \cdot 24,4 \cdot 18,6 \cdot 12,8 \cdot 9$
34. 7
35. 2
42.5
36. Explanations may vary. Sample: Yes; a number divisible by 9 has 3 as a factor.
37. a. 2 plates of 21 cookies, 3 plates of 14 cookies, 6 plates of 7 cookies
b. 2 plates of 28 cookies, 4 plates of 14 cookies, 7 plates of 8 cookies, 8 plates of 7 cookies
c. 2 plates of 30 cookies, 3 plates of 20 cookies, 4 plates of 15 cookies, 5 plates of 12 cookies, 6 plates of 10 cookies
d. 2 plates of 72 cookies, 3 plates of 48 cookies, 4 plates of 36 cookies, 6 plates of 24 cookies, 8 plates of 18 cookies, 9 plates of 16 cookies, 12 plates of 12 cookies, 16 plates of 9 cookies, 18 plates of 8 cookies
38. a.

Number	Last two digits	Are last two digits divisible by 4?	Is the number divisible by 4?
136	36	Yes	Yes
1,268	68	Yes	Yes
314	14	No	No
1,078	$\mathbf{7 8}$	No	No
696	$\mathbf{9 6}$	Yes	Yes

b. An integer is divisible by 4 if its last 2 digits are divisible by 4.
46. Answers may vary. Sample: 25, 35, 45
47. Answers may vary. Sample: 21, 24, 33
48. Answers may vary. Sample: 30, 60, 120
49. Answers may vary. Sample: a+1 is not divisible by 2. Dividing by 2 will leave a remainder of 1 .

