1. Composite; it has more than two factors, $1,3,9$, and 27.
2. Prime; it has only two factors, 1 and 19.
3. Prime; it has only two factors, 1 and 31.
4. Composite; it has more than two factors, 1, 2, 19, and 38.
5. Composite; it has more than two factors, $1,3,5,9,15$, and 45.
6. Prime; it has only two factors, 1 and 53.
7. Composite; it has more than two factors, 1, 3, 29, and 87.
8. Composite; it has more than two factors, 1, 3, 31, and 93.
9. 2^{3}
10. 7^{2}
11. 2-17
12. 2.3.7
13. $2^{3} \cdot 3^{2} \cdot 5$
14. $5 \cdot 23$
15. $2 \cdot 3 \cdot 31$
16. $\quad 3^{3} \cdot 23$
17. 25
18. $3 y^{2}$
19. prime
20. composite; 7^{2}
21. composite; 2•3 $\mathbf{3}^{2} \cdot 29$
22. 8 groups
23. 18
24. 2
25. 4
26. 5
27. 3
28. $6 c^{3}$
29. neither
30. z
31. $a^{2} b$
32. C
33. 13
34. $x y$
35. 1
36. Answers may vary. Sample: 6, 30
37. 42 chairs
38. composite; 11.23
39. composite; 17.59
40. Yes; the GCF is 1.
41. No; the GCF is 13 .
42. No; the GCF is 13.
43. Yes; the GCF is 1.
44. composite; $3^{2} \cdot 5^{2} \cdot 7$
45. prime
46. No; the GCF is 3 .
47. Yes; the GCF is 1 .
48. Yes; the GCF is 1.
49. No; the GCF is 6.
50. Answers may vary. Sample: Divide 50 by the prime factor 5 , and then divide the quotient, 10, by the prime factor 5 in a factor tree. Write the prime factorization $2 \cdot 5^{2}$.
